Discussion of

"The Geography of Financial Misconduct"

Christopher Parson Johan Sulaeman Sheridan Titman

University of Oregon Summer Finance Conference August 3, 2015

Jonathan Reuter
Boston College & NBER

Overview of Paper

Data:

Annual measure of financial misconduct (**FM**) for firms headquartered in 20 large cities, 1970-2009

- Hand-collected by KKLM (2013)
- Indicates all firm-years when FM occurs (assuming no false positives)

Pattern:

City-level average FM ranges from **0.48%** of firm-years (Indianapolis) to **1.66%** (Miami)

City-level standard deviation ranges from **0.73**% (LA) to **2.12**% (Orlando)

Question:

How can we better explain cross-sectional and timeseries variation in city-level financial misconduct (FM)?

Answer:

Social Factors ←→ Peer Effects!

"For just as proximity facilitates the spread of disease, the spillover of ideas and social norms can permit the diffusion of both prosocial and antisocial behavior."

Overview of My Discussion

1. Difficult to rule out alternatives to peer effects...

... especially without a clean experiment and detailed data on social networks...

... although the authors certainly make an honest effort

2. Unclear whether the peer effects are economically significant...

... unless you read the companion paper linking FM waves to future economic slowdown (or the earlier combined paper)

Evidence of Peer Effects

- Find that FM of firm j in industry i in area a in year t can be predicted by:
 - FM of firms in other industries in same area (T4)
 - FM of firms in same industry in other areas (T4)
 - FM of firms in same industry and same area (T4)
 - even when controlling for changes in local economic conditions and demographics (T9)
- Network? Large (small) firm FM predicts large (small) firm FM (T5)
- Enforcement? Across-city FM rates detected in former clients of Arthur Andersen are positively correlated with main ranking (T6)
- **Enforcement?** City-level FM is "highly correlated" with city-level political corruption and questionable medical practices, neither of which are enforced locally **(T8)**
- Bartik? FM in dominate industry (instrumented for by FM in same industry outside the area) predicts FM in other industries (T10)

Economic Significance?

- Throwdown regarding theory of rational crime: "perhaps the theory's largest embarrassment is its failure to account for the enormous variation in crime rates across both time and space."
- In Table 3, Authors begin with linear probability model (LPM) where unit of obs. is firm **j** in year **t** and they include different sets of FEs
 - R² of Year FEs > R² of Industry FEs > R² of Area FEs
 - R² < 1.0% even when they include all three sets of FEs
 - How about R² when including area-by-year FEs?
- In Table 4, they switch to logits, include contemporaneous FM averages and firm-level controls, but drop all FEs
 - Pseudo R² is 5-6%, but it is unclear how much of increase is due to peer's FM versus firm controls
- Is the glass half full (huge percentage increase over R² of 1%) or half empty (R² still "embarrassingly" close to 1%)?

August 3, 2015

City-Level Rankings

 Correlations between city-level FM and other measures led me to wonder about roles of politics and population in explaining cross-sectional differences in FM

•	City-level FM and political corruption	0.30	0.34	(T8)
	(Liu and Mikesell (2014): Only IL (4), PA (5), FL (10) appear in top 10)			
•	City-level FM and medical practices	0.33	0.28	(T8)
•	FM non-AA clients and FM AA clients	0.43	0.59	(T6)
•	City-level FM and pension underfunding	-0.24	-0.26	(State)
•	and property crime rate	-0.15	-0.16	(City)
•	and violent crime rate	0.08	0.13	(City)
•	and millionaires per capita	0.14	0.12	(State)
•	and happiness quintile	0.20	0.20	(State)
•	and # Republican victories	0.30	0.30	(State)
•	and average high temp	0.42	0.44	(City)
•	and population	0.46	0.57	(City)

August 3, 2015

Econometrics

- Central challenge in testing for peer effects is distinguishing whether CEO A is influenced by CEO B or whether both CEOs independently responde to same area-time specific incentives
- One approach is to include area-by-year FEs and then test for multiplier effects within subsamples (e.g., Bertrand et al. (2000))
 - While low average FM rates push authors towards Logits, I would prefer to see everything estimated as LPMs with fixed effects (e.g., when testing for differential peer effects based on firm size)
 - Will minimize Gormley & Matsa (2014) style critique re: averages
- At a minimum, baseline model should include additional controls for variation in firm-level costs and benefits of FM
 - Nature of CEO compensation? Extent of local labor market?
 - Level of institutional monitoring? Distance to rating threshold?
 - Political party of governor in year t?
 - Whether state pension fund invests directly in the firm

August 3, 2015

Econometrics (cont.)

- Additional challenge in this paper is possibility that crosssectional and time-series variation in FM reflects variation in detection rather than in underlying behavior
 - Authors take several steps to address this concern... including T7
 - Why not simply compare specification where FM = 1 in year fraud begins to another where FM = 1 in the year fraud is detected?
 - If peer effects matter, estimated peer effect should be stronger with respect to initiation than detection
- If FM arises from social interactions, spillovers should be weaker for CEOs with fewer interactions
 - Quick: Focus on variation in CEO tenure rather than CEO age
 - Better: Compare CEOs who are new to the city (external hires) to those with a long tenure (internal hires)
 - **Stalker:** Identify zip codes of CEO homes and test for stronger peer effects among CEOs in same zip code

August 3, 2015 8

Conclusion

- I have long thought of LA, MS, and IL as being corrupt states...
 ... but I had not thought about spillovers to firms in these states...
 ... or spillovers across firms within cities
- This paper highlights interesting cross-sectional and time-series variation in the level of financial misconduct by public firms
 - Interestingly, cities from LA and MS don't make their list
 - Is it harder or more expensive to go public in a corrupt state?
- The evidence for peer effects is stronger than I expected it to be before reading the paper but not bullet proof
 - Most convincing test is limited to four cities
- I encourage the authors to include more firm-level controls and explore additional LPM specifications
- I also encourage them to focus more on the link between political corruption and financial misconduct, which is fascinating

August 3, 2015 9